

TVFC Refroidisseur adiabatique

MANUEL D'OPÉRATION ET D'ENTRETIEN

Programme de maintenance et de surveillance recommandé

L'équipement de la société Baltimore Aircoil doit être correctement installé, utilisé et entretenu. La documentation de l'équipement utilisé, y compris les schémas, les fiches techniques et ce manuel, doivent être conservés. Pour garantir un fonctionnement de longue durée, sans problèmes et en toute sécurité, il est nécessaire d'établir un plan de fonctionnement incluant un programme d'inspection, de surveillance et de maintenance régulières. Toutes les inspections et interventions de maintenance et de surveillance doivent être inscrites sur un registre dédié au système de refroidissement. Les présentes instructions d'utilisation et de maintenance peuvent servir de guide pour réaliser ces objectifs.

Outre établir un plan de fonctionnement et tenir un registre pour le système de refroidissement, il est recommandé qu'une analyse des risques du système de refroidissement soit réalisée, de préférence par un tiers indépendant.

Pour des recommandations plus spécifiques sur la manière de conserver toute l'efficacité et la sécurité du système de refroidissement, contacter le représentant BAC local. Nom, email et n° de téléphone sont disponibles sur notre site www.BACService.eu.

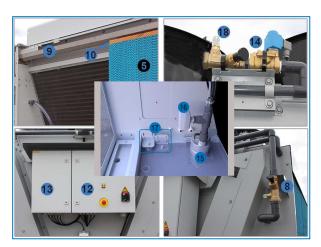
Contrôles et réglages	Mise en service	Tous les mois	Tous les 3 mois	Tous les 6 mois	Chaque début de saison adiabatique, printemps
Débit d'eau du pré-refroidisseur adiabatique	Х		Х		X
Interrupteurs de niveau (option)	Х				X
Serrer les connexions électriques	Х			Х	X
Rotation du ou des ventilateurs	Х				
Tension et courant des moteurs	Х			Х	Х
Bruits et/ou vibrations inhabituels	Х		Х		Х

Inspection et surveillance	Mise en service	Tous les mois	Tous les 3 mois	Tous les 6 mois	Chaque début de saison adiabatique, printemps
État général de l'équipement	Х		Х		X
Média de pré-refroidissement adiabatique	Х		Х		Х
Batterie d'échange de chaleur	Х			Х	
Tuyauterie de distribution d'eau	Х			Х	Х
Interrupteur à flotteur (le flotteur sphérique peut se déplacer librement)	Х	х			Х

Procédures de nettoyage	Mise en service	Tous les mois	Tous les 3 mois	Tous les 6 mois	Chaque début de saison adiabatique, printemps
Média de pré-refroidissement adiabatique	Х		Х		X
Système de tuyauterie adiabatique				Х	Х
Bassin				Х	Х
Batterie (éliminer la poussière)					X

L'équipement auxiliaire intégré dans le système de refroidissement peut nécessiter des ajouts au tableau ci-dessus. Contacter les fournisseurs pour les actions recommandées et leur fréquence.

Table des matières


1	Détails de construction	4
2	Généralités	6
	Conditions de fonctionnement	6
	Connexion de la tuyauterie	7
	Mesures de sécurité	7
	Exigences relatives à l'élimination des déchets	8
	Surfaces non accessibles	g
	Modifications par des tiers	g
	Garantie	g
3	Traitement de l'eau	10
	À propos du traitement de l'eau	10
	Débits d'eau minimum recommandés pour le pré-refroidisseur adiabatique	10
	Contrôle biologique	12
	Traitement chimique	13
4	Fonctionnement par temps froid	14
	A propos du fonctionnement par temps froid	14
	Protection antigel de la batterie	14
	Protection contre le gel du pré-refroidisseur	15
	Protection des composants électriques	15
5	Mode d'emploi	16
	Refroidisseurs TrilliumSeries avec ventilateurs EC et coffret de commande installé en usine	16
	Logique de commande	16
	Coffrets électriques	16
	Instructions d'utilisation du PLC	17
	Surveillance des informations à traiter	17
6	Procédures de maintenance	19
	Contrôles et réglages	19
	Inspections et actions correctives	22
	Remplacement du ventilateur	24
	Procédures de nettoyage	29
	Média de pré-refroidissement adiabatique	33
7	Maintenance globale	35
	À propos de la maintenance globale	35
	Stockage prolongé à l'extérieur	35
8	Assistance spécifique et informations complémentaires	36
	The service expert for BAC equipment	36
	Plus d'informations	36

TVFC DÉTAILS DE CONSTRUCTION

Détails

- 1. Échangeur de chaleur
- 2. Collecteurs de la batterie
- 3. Caisson
- 4. Ventilateurs
- 5. Média du pré-refroidisseur
- 6. Vanne de vidange du pré-refroidisseur
- 7. Vidange du pré-refroidisseur
- 8. Vanne de régulation du débit d'eau/débitmètre du prérefroidisseur
- 9. Gouttière de distribution d'eau du pré-refroidisseur
- 10. Média de distribution d'eau du pré-refroidisseur
- 11. Sonde de température ambiante
- 12. Coffret d'alimentation
- 13. Coffret de commande
- 14. Appoint d'eau
- 15. Pompe de recirculation (en option)
- 16. Interrupteur de débit (en option)
- 17. Interrupteur de niveau (en option)
- 18. Vanne d'équilibrage du débit d'appoint d'eau
- 19. Raccordements aux batteries

Conditions de fonctionnement

L'équipement de refroidissement BAC est conçu pour les conditions de fonctionnement ci-dessous, qui ne doivent pas être dépassées durant le fonctionnement.

- Charge due au vent : pour la sécurité de fonctionnement d'un équipement non protégé, exposé à un vent dépassant les 120 km/h, installé à plus de 30 m du sol, contacter le représentant BAC Balticare local.
- **Risque sismique :** Pour la sécurité de fonctionnement d'un équipement installé dans une zone à risque moyen et élevé, contacter le représentant BAC Balticare local.

La température ambiante en fonctionnement à pleine vitesse continue et à pleine charge doit être comprise entre -10°C et +45°C. Sous les climats froids, si des résistances de chauffe contrôlées via un thermostat sont utilisées, la plage de températures peut être étendue de -40°C à +45°C.

BATTERIE D'ÉCHANGE DE CHALEUR

- Pression de conception : 10 bars
- Température maximale à l'entrée du fluide : 60°C
- Les fluides qui circulent à l'intérieur des batteries doivent être compatibles avec le matériau de construction des batteries.

PRÉ-REFROIDISSEUR ADIABATIQUE DU REFROIDISSEUR TRILLIUMSERIES

- Pression de travail de conception : 3-10 bars
- L'eau distribuée aux pré-refroidisseurs adiabatiques doit être potable.
- En cas d'eau non traitée, la température doit être maintenue en dessous de 20°C.

QUALITÉ DE L'EAU DE CIRCULATION

Les batteries standard d'échange de chaleur sont en cuivre et utilisent le CuP 181 et le CuP 284 (ISO 17672) en guise de matériau de brasage. Elles sont conçues pour être utilisées sur des systèmes à circuit fermé pressurisés qui ne sont pas exposés à l'atmosphère, et ce, afin d'éviter un encrassement excessif ainsi que la corrosion interne de la batterie et d'éventuelles fuites.

La qualité de l'eau en circulation doit rester dans les limites suivantes :

	Cuivre
рН	6.5 - 10.5
Dureté (en CaCo3)	0 - 500 mg/l
Alcalinité (en CaCO3)	0 - 500 mg/l

	Cuivre
Conductivité	< 3300 μS/cm
Chlorures	< 250 mg/l
Total solides en suspension	< 10 mg/l
COD	< 50 ppm

BAC

Dans tous les cas, une entreprise de traitement de l'eau compétente doit être consultée pour le traitement spécifique de l'eau à appliquer, ce dernier devant être adapté à tous les matériaux de construction utilisés dans l'ensemble du système. Pour les niveaux de pH plus élevés, il est recommandé d'ajouter un inhibiteur de corrosion spécifique pour le cuivre, tel que le TT ou le BZT, avec une concentration résiduelle cible supérieure à 2 ppm (plusieurs dosages peuvent être nécessaires).

Connexion de la tuyauterie

Toute la tuyauterie extérieure de l'équipement de refroidissement BAC doit être supportée séparément. Si l'équipement est installé sur des rails ou des ressorts antivibratoires, la tuyauterie doit contenir des compensateurs pour éliminer les vibrations transmises par la tuyauterie extérieure.

Mesures de sécurité

Tous les composants électriques, mécaniques et mobiles constituent un danger potentiel, notamment pour les personnes qui ne connaissent pas leur fonction, construction et fonctionnement. Par conséquent, des mesures de sécurité adéquates (dont, au besoin, l'utilisation de barrières de protection) doivent être prises avec cet équipement, tant pour sauvegarder la sécurité du public (mineurs compris) que pour éviter d'endommager l'équipement, les systèmes qui lui sont associés et les locaux.

En cas de doute sur la sécurité et les procédures correctes de manutention, d'installation, d'utilisation ou de maintenance, demander conseil au fabricant de l'équipement ou à son représentant.

Lorsque vous travaillez sur l'équipement en fonctionnement, n'oubliez pas que certaines pièces peuvent être extrêmement chaudes. Toute opération effectuée à hauteur élevée doit faire l'objet d'une attention particulière pour éviter les accidents.

ATTENTION

La surface de la batterie/du tuyau peut être chaude.

PERSONNEL AUTORISÉ

L'utilisation, la maintenance et la réparation de cet équipement ne peuvent être réalisés que par un personnel autorisé et qualifié. Ce personnel doit parfaitement connaître l'équipement, les systèmes et commandes qui lui sont associés et les procédures décrites dans ce document et autres manuels. Utilisez correctement les équipements personnels de protection ainsi que les procédures et outils appropriés pour la manutention, le levage, l'installation, l'utilisation, la maintenance et la réparation de cet équipement afin d'éviter des blessures corporelles et/ou des dommages matériels. Le personnel doit utiliser des équipements personnels de protection lorsque cela est nécessaire (gants, bouchons d'oreilles, etc.).

SÉCURITÉ MÉCANIQUE

La sécurité mécanique de l'équipement est conforme aux exigences de la Directive Européenne pour les machines. Les conditions du site pourraient nécessiter l'installation d'éléments tels que grilles de fond, échelles, crinolines, escaliers, plates-formes d'accès, mains courantes et garde-pieds pour la sécurité et le confort du personnel de service et de maintenance.

Ne jamais utiliser cet équipement si les grilles de protection des ventilateurs ne sont pas en place et correctement fixé.

Étant donné que l'équipement opère à des vitesses variables, des mesures doivent être prises pour éviter une utilisation avoisinant la « vitesse critique » de l'installation.

Pour plus d'informations, consulter le représentant BAC local.

SÉCURITÉ ÉLECTRIQUE

Tous les composants électriques associés à cet équipement doivent être installés avec un sectionneur. En cas de composants multiples, ceux-ci peuvent être installés après un seul sectionneur, mais plusieurs sectionneurs ou une combinaison de ceux-ci sont également autorisés.

Ne jamais effectuer de travaux d'entretien sur ou près des composants électriques sans avoir pris les mesures nécessaires. Ces dernières consistent à, mais sans s'y limiter :

- Isoler électriquement le composant
- Verrouiller l'interrupteur d'isolation afin d'empêcher un redémarrage involontaire
- Mesurer qu'aucune tension électrique n'est présente
- Si certaines parties de l'installation restent sous tension, s'assurer de bien les délimiter afin d'éviter toute Les bornes et connexions de moteur de ventilateur peuvent présenter une tension résiduelle après l'arrêt de l'appareil. Après mise hors tension de tous les pôles, attendre cinq minutes avant d'ouvrir l'armoire à bornes des moteurs.

RÉGLEMENTATIONS LOCALES

L'installation et l'utilisation de l'équipement de refroidissement sont soumises à la réglementation locale établissement d'une analyse des risques, par exemple. S'assurer que les conditions réglementaires sont respectées.

Exigences relatives à l'élimination des déchets

Le démontage de l'unité et le traitement des réfrigérants (si applicable), de l'huile et des autres pièces doit se faire d'une part en respectant l'environnement et d'autre part en protégeant les employés des risques potentiels liés à l'exposition à des substances dangereuses.

Les législations nationale et régionale relatives à l'élimination du matériel et à la protection des travailleurs doivent être prises en compte pour les points suivants :

- Gestion adéquate des matériaux de construction et de maintenance lors du démontage de l'unité. En particulier, s'il s'agit de matériaux contenant des substances dangereuses, comme de l'amiante ou des substances cancérigènes.
- Élimination adéquate des matériaux de construction et de maintenance, ainsi que des composants comme l'acier, le plastique, les réfrigérants et les eaux usées, en accord avec les normes locales et nationales en matière de gestion des déchets, de recyclage et de mise au rebut.

Surfaces non accessibles

L'accès à tout composant ainsi que leur maintenance doivent être effectués conformément à l'ensemble des législations et règlements applicables. Si les moyens d'accès appropriés et requis ne sont pas présents, des structures temporaires doivent être prévues. En aucun cas, on ne peut utiliser des parties de l'appareil qui ne sont pas conçues pour être un moyen d'accès, à moins que des mesures ne soient prises pour atténuer les risques possibles.

Modifications par des tiers

Chaque fois que des modifications ou des changements sont apportés par des tiers à l'équipement BAC sans l'autorisation écrite de BAC, la tierce partie qui a effectué ces modifications devient responsable de toutes les conséquences de celles-ci et BAC décline toute responsabilité concernant ce produit.

Garantie

La société BAC garantit que tous ses produits sont exempts de défauts de fabrication au niveau des matériaux et de la main d'œuvre, et ce, pendant une période de 24 mois à compter de la date d'expédition. Si un tel défaut devait toutefois être présent, la société BAC effectuera les réparations nécessaires ou procédera au remplacement du produit. Pour plus de détails, voir les limitations de garantie applicables et en vigueur au moment de l'achat de ces produits. Vous pouvez trouver ces termes et conditions au verso de votre formulaire d'accusé de réception de la commande et de votre facture.

TVFC TRAITEMENT DE L'EAU

À propos du traitement de l'eau

Le pré-refroidisseur adiabatique de l'appareil a été conçu en tant que système direct sans recirculation d'eau et sans pompe.

Par conséquent, il est essentiel que l'eau de ville froide qui alimente le pré-refroidisseur adiabatique ait une pression et un débit appropriés au pré-refroidisseur installé.

La principale méthode de contrôle du traitement de l'eau du pré-refroidisseur adiabatique consiste à fournir suffisamment d'eau au média du pré-refroidisseur pour le maintenir propre. Si le débit d'eau ne suffit pas à mouiller et rincer complètement toute la surface du média du pré-refroidisseur, un dépôt se formera.

On peut éviter de nombreux problèmes liés à l'eau si la conception du système est adéquate et si l'on suit de bonnes pratiques de base. Cependant, les produits chimiques de traitement de l'eau NE doivent PAS remplacer les pratiques suivantes :

· fournir une distribution d'eau régulière

(Voir tableau "Débits d'eau minimum recommandés pour le pré-refroidisseur adiabatique").

- nettoyer régulièrement le collecteur de distribution ;
- nettoyer régulièrement le tamis d'eau de ville ;
- · remplacer le média endommagé ou usé du pré-refroidisseur.

Faire référence à « Détails de construction » sur la page 4. L'eau de ville froide alimente (6) et arrive au collecteur de distribution d'eau via une vanne de régulation de débit/débitmètre (9). La pression d'alimentation en eau recommandée est de 3 bars minimum. The flow valve/meter (8) needs to be adjusted at installation to feed a minimum water flow over the adiabatic pre-cooler (See table: "Minimum recommended adiabatic pre-cooler water flow rates")

Débits d'eau minimum recommandés pour le prérefroidisseur adiabatique

Le débit d'eau minimum à distribuer au pré-refroidisseur adiabatique dépend :

- · des conditions climatiques du taux d'évaporation aux conditions de dimensionnement
- de la qualité générale de l'eau;
- de la tendance de l'eau à l'entartrage (indice pratique d'entartrage).

Les débits d'eau minimum indiqués dans le tableau « Débits d'eau minimum recommandés pour le prérefroidisseur adiabatique » sont valables dans les conditions de fonctionnement suivantes :

- température ambiante maximale de 35°C et humidité relative minimale de 30 %;
- qualité minimale de l'eau fournie (voir Tableau ci-dessous « Qualité minimale de l'eau fournie »).
- indice pratique d'entartrage de 5.5 8.0.

Si l'une des situations suivantes se présentaient :

· conditions ambiantes dépassant les conditions ambiantes maximales données,

10

- avec des paramètres de qualité de l'eau fournie dépassant une ou plusieurs limites de concentration du tableau ci-dessus : Qualité minimale de l'eau fournie
- si l'indice pratique d'entartrage de l'eau fournie est inférieur à 5.5,

Dans ce cas:

• le débit d'eau doit être augmenté pour éviter l'encrassement et l'entartrage rapides du média du prérefroidisseur. Contacter le représentant BAC local pour assistance.

Pour contrôler la corrosion et lutter contre le tartre, la composition chimique de l'eau en circulation doit respecter les recommandations relatives à la qualité de l'eau des matériaux de construction spécifiquement utilisés, tels que répertoriés dans le(s) tableau(x) suivant(s).

When operating with the optional recycling pump and water is circulating across the pre-cooler, the cycles of concentration need to be determined to prevent excessive build-up of impurities. The cycles of concentration are the ratio of the concentration in the circulating water compared to the concentration in the make-up water. For example: If a given make-up water had 100 ppm of chlorides, it would be possible to run the system at 300 / 100 equals 3 cycles of concentration without exceeding the 300 ppm of chlorides allowed for a Baltibond unit.

This calculation process needs to be repeated for all the guideline parameters (hardness, sulphates, alkalinity, etc.) and the lowest resultant cycles of concentration used.

(Cycles of concentration - 1) = Evaporation loss / Blow down

When the PLC is set for recirculation of water, the value for the deconcentration after refills is equal to the cycles of concentration. This is standard set at 3. In the PLC manual is described how this value can be adjusted.

Paramètres de qualité de l'eau pour adiabatique Cadre du pré-refroidisseur adiabatique	Revêtement hybride Baltibond [®]
Température	< 20 °C
рН	De 6,5 à 9,0
Dureté en (CaCO ₃)	30 – 500 mg/l
Alcalinité en (CaCO ₃)	< 500 mg/l
Total des solides dissous	< 1500 mg/l
Chlorures	< 200 mg/l
Sulfates	< 300 mg/l
conductivité	1800 μS/cm
Taux de bactéries (CFU/ml, KBE/ml)	<1000

Qualité minimale de l'eau fournie

To determine the practical scaling index, below instructions need to be followed:

This calculation needs to be done based on the make-up water quality (when operating with the optional recycling pump, this means the expected worst case recirculating water quality needs to be used).

- 1. Obtain values of A, B, C and D from below table
- 2. pHs = (9.3 + A + B) (C + D)
- 3. Indice pratique d'entartrage = 2 pHs pHeq
 - Si l'indice est supérieur à 6.0, le tartre se dissout.

- Si l'indice est de 6.0, l'eau est stable.
- Si l'indice est inférieur à 6.0, le tartre se dépose.

With Practical Scaling Index below 5.5, the water flow needs to be increased. Contacter le représentant BAC local pour assistance.

Conducti [,] (µS/cm A			erature °C B	Dureté en d (PPM de C C		Alcalinite (en Ca D		Alcal (PPM de pHe	CaCO
50-300	0.1	10-13	2.3	10-15	0.70	10-15	1.10	50	7.0
301-1000	0.2	14-17	2.2	16-25	0.90	16-25	1.30	100	7.5
1001-3000	0.25	18-21	2.1	26-40	1.10	26-40	1.50	200	7.9
3001-5000	0.27	22-27	2.02.0	41-70	1.35	41-70	1.75	300	8.2
				71-100	1.55	71-100	1.90	400	8.4
				101-140	1.70	101-140	2.10	500	8.9
				141-200	1.85	141-200	2.25		
				201-250	1.95	201-250	2.35		
				251-300	2.05	251-300	2.45		
				301-350	2.12	301-350	2.52		
				351-400	2.18	351-400	2.58		
				401-450	2.24	401-450	2.63		
				451-500	2.28	451-500	2.68		

Calcul de l'indice pratique d'entartrage

Pour l'application du traitement de l'eau à l'ozone :

- · Nécessite l'utilisation d'acier inoxydable 316L.
- Les niveaux d'ozone doivent être maintenus à $0.2~\text{ppm} \pm 0.1~\text{ppm}$ pendant au moins 90~% du temps, avec

Contrôle biologique

Le pré-refroidisseur adiabatique et ses commandes ont été conçus pour réduire au minimum le risque de développement incontrôlé d'algues, de limons et autres microorganismes comme les bactéries du type Legionella.

- 1. Pas d'eau stagnante
- 2. Séchage complet du système de pré-refroidissement après chaque cycle adiabatique
- 3. Vidange complète de toute la tuyauterie de distribution d'eau installée sur l'appareil après chaque cycle adiabatique

ATTENTION

Le propriétaire de l'équipement est responsable de la vidange de toute la tuyauterie de l'eau alimentant le pré-refroidisseur adiabatique afin d'éviter de créer des zones de stagnation de l'eau.

- 4. Alimentation en eau potable à des températures de 20°C ou moins, auxquelles les bactéries du type Legionella sont dormantes
- 5. Fonctionnement sans aérosol

Si l'on suit les bonnes pratiques de base et les instructions d'utilisation et de maintenance décrites dans ce bulletin, on évitera les problèmes liés au développement incontrôlé de micro-organismes.

Traitement chimique

Il est possible d'associer un programme biocide de contrôle biologique au programme de maintenance afin de renforcer la sécurité du fonctionnement. Cependant, le contrôle biologique ne doit pas remplacer la bonne pratique.

Les deux biocides les plus courants sont le chlore et le bromure. Ces produits chimiques sont largement répandus dans les applications générales ; il faut néanmoins faire attention lorsqu'on les utilise dans le système de pré-refroidissement adiabatique. Les dosages de chlore ou de bromure en traitement continu pourraient délignifier les fibres cellulosiques du média du pré-refroidisseur et détériorer les agents durcissants.

DOSAGES DE CHLORE/BROMURE RECOMMANDÉS

Traitement continu: non requis si on suit les bonnes pratiques de base et les instructions d'utilisation et de maintenance décrites dans ce bulletin.

Traitement de choc: 3.0 – 5.0 PPM d'halogènes libres. Non recommandé plus d'une fois par trimestre.

A propos du fonctionnement par temps froid

L'équipement refroidissement BAC peut être utilisé à une température ambiante inférieure à 0°C à condition de prendre des mesures appropriées. Voici des instructions générales qui devraient être suivies pour réduire au minimum les risques de gel. Ces instructions pouvant ne pas comprendre tous les aspects du modèle de fonctionnement prévu, le concepteur et l'opérateur du système doivent soigneusement évaluer le système, l'emplacement de l'équipement, des commandes et des accessoires afin d'assurer constamment un fonctionnement fiable.

Protection antigel de la batterie

La meilleure protection est l'utilisation de glycol ou d'autres solutions antigel dans des concentrations appropriées. L'utilisation de ces solutions influençant la performance thermique de l'aéroréfrigérant, il faut en tenir compte lors du choix du ou des modèles. Le tableau ci-dessous indique la plage de protection contre le gel pour différentes concentrations d'éthylène-glycol (% par volume).

% d'éthylène	Protection contre le gel
20%	-10°C
30%	-16°C
40%	-25°C
50%	-39°C

Protection contre le gel des solutions d'éthylène-glycol

Les systèmes de glycol nécessitent des inhibiteurs spécifiques compatibles avec les matériaux de construction avec lesquels ils entrent en contact. Ces inhibiteurs sont généralement pré-mélangés à l'additif de glycol pour le circuit de refroidissement.

Si on doit utiliser le système avec de l'eau, les deux conditions suivantes doivent être remplies simultanément :

- 1. maintien d'un débit turbulent dans l'appareil à tout moment ;
- 2. maintien d'une charge thermique minimale de sorte que la température de l'eau sortant de la ou des batteries ne descende pas en dessous de 10°C.

Si la charge du processus est extrêmement faible ou inexistante, il pourrait être nécessaire d'appliquer une charge thermique auxiliaire durant les conditions de gel. Consulter le représentant BAC local pour conseil.

Sur un appareil standard, la vidange complète de la batterie des échangeurs de chaleur n'étant pas possible, cette méthode n'est pas fiable pour protéger les refroidisseurs de fluide fonctionnant à des températures ambiantes susceptibles de descendre sous le point de congélation et pour protéger la batterie contre des dommages.

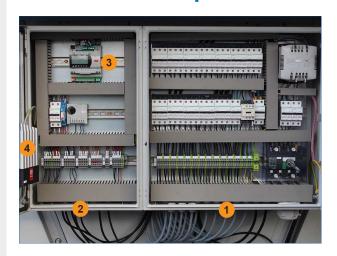
Protection contre le gel du pré-refroidisseur

Les commandes intégrées évitent automatiquement le fonctionnement adiabatique lorsque la température ambiante passe en dessous de 4°C. L'unité ne requiert aucune autre attention particulière. Il est bien entendu conseillé de prendre les précautions nécessaires pour la tuyauterie qui alimente l'unité.

Protection des composants électriques

Les composants renfermés dans le coffret électrique sont conçus pour fonctionner à des températures ambiantes allant jusqu'à -10°C. Si des températures inférieures sont attendues, le panneau de commandes doit être équipé d'un élément de chauffage afin d'éviter que la température à l'intérieur du coffret ne tombe sous les -10°C.

Refroidisseurs TrilliumSeries avec ventilateurs EC et coffret de commande installé en usine


Logique de commande

La vitesse de ventilation est contrôlée sur la base de la température réelle de retour du fluide de process et de la température de retour de conception, garantissant une consommation d'énergie et des niveaux sonores minimum.

Le pré-refroidissement adiabatique sera activé et stoppé sur la base d'une combinaison logique préprogrammée de la température de retour et de la température ambiante (point de consigne donné). Les paramètres par défaut n'activeront pas le pré-refroidissement adiabatique à moins que tous les ventilateurs ne tournent à vitesse maximale autorisée et que le point de consigne humide/adiabatique ne soit atteint. La logique de commande adiabatique est préprogrammée et prête à fonctionner.

Il pourrait être nécessaire de régler les PI paramètres de régulation préprogrammées en fonction de la taille réelle de l'installation.

Coffrets électriques

Coffret électrique pour les appareils avec ventilateurs EC

- 1. Coffret d'alimentation
- 2. Coffret de commande
- 3. Régulateur numérique avec interface LCD
- Dispositif de chauffage en option (nécessaire en cas de températures ambiantes comprises entre -10°C et -40°C)

COFFRET DE COMMANDE

Le coffret de commande contient le PLC (contrôleur logique programmable) et le thermostat en option. Les composants suivants sont installés à l'extérieur du coffret d'alimentation.

- Arrêt d'urgence: Appuyer pour activer. Tourner pour désactiver.
- Bouton de réinitialisation (redémarrage après un arrêt d'urgence).
- Témoin d'alimentation 24 V c.a.

COFFRET D'ALIMENTATION

Les composants suivants sont installés à l'extérieur du coffret d'alimentation.

Commutateur MARCHE/ARRÊT

Instructions d'utilisation du PLC

- Menu de boucle principale (état de l'appareil, températures, vitesse de rotation du ventilateur, etc.)
- · Alarmes (état des diverses alarmes)
- Menu utilisateur (paramètres d'opération)
- Menu constructeur (non accessible)
- Programmateur
- Informations système
- · Système de journalisation (historique des alarmes et des avertissements)
- Maintenance
- Temps de fonctionnement (nombre d'heures de fonctionnement des ventilateurs et du pré-refroidissement adiabatique)
- Entrées/sorties

Voir le manuel d'instructions du logiciel (SI-TVFC) ainsi que les paramètres spécifiques de l'appareil dans votre formule de dépôt.

ATTENTION

La modification des paramètres du régulateur peut provoquer un fonctionnement indésirable de l'appareil tel qu'un phénomène de pompage, une activation trop tôt du pré-refroidissement (et ainsi une augmentation de la consommation d'eau) ou la retarder et, dans ce cas, amener les températures de sortie du fluide à dépasser la température de dimensionnement.

Surveillance des informations à traiter

CONTACTS SECS SUR LE BORNIER DU PANNEAU ÉLECTRIQUE

- Entrée :
 - Exécuter l'autorisation (NO)
 - Free cooling (NO)
- Sortie :
 - Avertissement (NO)
 - Exécuter l'indication (NO)

SYSTÈME DE BUS NUMÉRIQUES

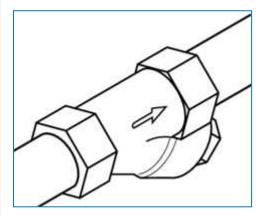
Une connexion bus de la commande numérique peut être câblée vers le bornier à des fins de surveillance. En fonction du protocole de communication requis, une carte de communication facultative peut être installée dans le régulateur.

Contrôles et réglages

DÉBIT D'EAU DU PRÉ-REFROIDISSEUR ADIABATIQUE

Le débit d'eau dépendra de la pression de l'eau fournie, et il peut être réglé avec les 2 vis hexagonales concentriques de la vanne de régulation du débit d'eau située sur le débitmètre. Commencer par ouvrir la plaquette de protection en plastique de la vis de réglage du débit d'eau.

Vis de réglage du débit d'eau



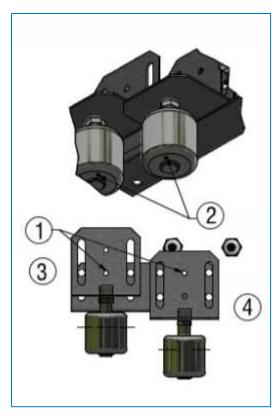
N° de modèle	Nombre de ventilateurs	Débit d'eau du pré-refroidisseur recommandé par appareil				
		Passage unique	Recirc	culation		
		rassage unique	Appoint d'eau	Pompe		
TVFC-EC-8022-*	4 ventilateurs	2 x 7 l/min	1 x 14 l/min	1 x 30 l/min		
TVFC-EC-8023-*	6 ventilateurs	2 x 11 l/min	1 x 22 l/min	1 x 40 l/min		
TVFC-EC-8024-*	8 ventilateurs	2 x 14 l/min	1 x 28 l/min	2 x 30 l/min		
TVFC-EC-8025-*	10 ventilateurs	2 x 18 l/min	1 x 36 l/min	2 x 35 l/min		
TVFC-EC-8026-*	12 ventilateurs	2 x 22 l/min	1 x 44 l/min	2 x 40 l/min		
TVFC-EC-8027-*	14 ventilateurs	2 x 25 l/min	1 x 50 l/min	2 x 50 l/min		

Afin de garantir la possibilité de fonctionner en mode Passage unique en cas de défaillance de la pompe, le débit d'appoint d'eau du mode Recirculation est le même que celui du mode Passage unique. Bien entendu, cela ne se reflète en rien sur la consommation d'eau car celle-ci dépend de la température ambiante et de la qualité de l'eau d'appoint.

The pre-cooler water supply pipes should be properly flushed before the pre-coolers are activated the first time. If the water source contains solids, a strainer should be installed to prevent these from entering the unit's water distribution system.

We would recommend a strainer for the customer make-up/city water supply with the specifications:

- 1. Y strainer is required
- 2. Mesh range ≥ 50 mesh (≤ 300 microns).


INTERRUPTEURS DE NIVEAU

Les interrupteurs de niveau ne sont disponibles que pour les unités de recirculation.

Deux interrupteurs à flotteur en acier inoxydable de qualité industrielle maintiennent le niveau d'eau dans le bassin entre un niveau minimum et maximum, afin qu'il y ait toujours suffisamment d'eau disponible pour assurer un bon mouillage des médias de pré-refroidissement.

Tous les interrupteurs sont réglés en usine au niveau correct. La vérification peut s'effectuer visuellement ou à l'aide d'un outil comme un tournevis, lorsque les trous correspondants sont correctement alignés (voir dessin cidessous).

Mesures de la construction de l'interrupteur à flotteur

- 1. Trous correspondants
- 2. Marque témoin
- 3. Niveau haut
- 4. Niveau bas

Positionnez l'interrupteur à flotteur de niveau haut et bas à l'aide d'un profil cylindrique métallique comme un tournevis. Le fonctionnement de l'interrupteur à flotteur peut être inversé. Pour un fonctionnement correct, la marque témoin est en bas.

Le niveau d'eau minimum et maximum peut être ajusté selon des conditions spécifiques au site, en modifiant la position verticale des interrupteurs à flotteur.

ATTENTION

La modification des points de consigne peut entraîner un débordement du bassin ou endommager les pompes.

Instructions pour changer la hauteur :

- 1. Desserrez les boulons M8
- 2. Réglez la position verticale du flotteur à la hauteur souhaitée
- 3. Resserrez les boulons M8

POINT DE CONSIGNE DU PRÉ-REFROIDISSEUR ADIABATIQUE

Le fonctionnement des sections de pré-refroidissement adiabatique est régulé par la PLC.

Le PLC doit limiter le démarrage et l'arrêt à 1 par jour maximum par côté de pré-refroidissement adiabatique afin d'augmenter la durée de vie du média du pré-refroidisseur. Si le nombre de démarrages et d'arrêts quotidiens dépasse 1 par jour, il est recommandé de régler les points de consigne du PLC. Le pré-refroidisseur peut fonctionner de manière à autoriser un plus grand nombre de démarrages et d'arrêts qui réduiraient la consommation d'eau annuelle totale, mais cette pratique limiterait drastiquement la durée de vie du média du pré-refroidisseur adiabatique.

CONNEXIONS ÉLECTRIQUES

Vérifiez les contacts électriques et resserrez-les au besoin avant la mise en service de l'appareil. Certains contacts électriques peuvent se desserrer durant le transport, d'où un risque de surchauffe ou de chutes de tension. Des contrôles sont recommandés tous les six mois durant le fonctionnement.

ROTATION DES VENTILATEURS

Les ventilateurs doivent tourner sans entrave dans la direction indiquée sur l'équipement par des flèches.

TENSION ET COURANT DES MOTEURS

Vérifier la tension et le courant des trois bornes des moteurs des ventilateurs. Le courant ne doit pas dépasser la puissance nominale plaquée.

Après un arrêt prolongé, vérifier l'isolation du moteur avec un testeur d'isolement « megger » avant le redémarrage.

La tension électrique ne doit pas fluctuer au-delà de +/- 10% et le déséquilibre entre les phases ne doit pas dépasser +/- 2 %.

ATTENTION

Ne laissez pas fonctionner/démarrer le ou les moteurs de ventilateur sans charge thermique.

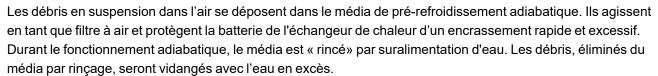
BRUITS ET VIBRATIONS INHABITUELS

Des bruits et/ou vibrations inhabituels sont le résultat d'un dysfonctionnement de composants mécaniques ou de problèmes de fonctionnement (par exemple, formation de glace indésirable). Dans ce cas, il est nécessaire d'effectuer une inspection minutieuse de toute l'unité, suivie d'une action corrective immédiate. Au besoin, consulter le représentant BAC local pour assistance.

Inspections et actions correctives

ÉTAT GÉNÉRAL DE L'ÉQUIPEMENT

L'état général de l'équipement doit être inspecté une fois par an.


L'inspection doit porter sur :

- · les signes de corrosion
- · l'accumulation de saleté et de débris

Les petits dommages de la protection anticorrosion DOIVENT être réparés le plus tôt possible afin d'éviter leur aggravation. Pour la protection Baltibond[®], utiliser le kit avec n° de pièce détachée RK1057. Signaler les dommages plus importants au représentant BAC local.

MÉDIA DE PRÉ-REFROIDISSEMENT ADIABATIQUE

Le média de pré-refroidissement peut être démonté durant la saison froide, et ce dès qu'on est sûr que la température ambiante ne dépassera plus le point de passage du mode sec au mode adiabatique. Cela prolongera la durée de vie du média. Mais cela augmentera également la vitesse d'encrassement de la batterie sèche de l'échangeur de chaleur.

Il est recommandé d'effectuer une inspection du média du pré-refroidisseur adiabatique au moins tous les trimestres, même en mi-saison et en hiver, lorsque les cycles adiabatiques ne sont généralement pas requis. L'inspection doit porter sur :

- · les signes d'encrassement et d'entartrage rapides du média ;
- · le mouillage complet et uniforme de la zone frontale.

Interrupteurs à flotteur

· Vérifiez que les interrupteurs à flotteur peuvent bouger librement.

Encrassement

Si la saleté et les débris se sont accumulés en excès sur le média de pré-refroidissement, il est recommandé de rincer le média. Voir« Média de pré-refroidissement adiabatique » sur la page 33 pour la procédure de nettoyage et de rinçage du média.

Entartrage

Le média de pré-refroidissement s'entartrera chaque fois qu'il séchera à la fin de chaque cycle adiabatique. Le degré d'entartrage dépendra :

- du nombre de démarrages et d'arrêts adiabatiques par jour ;
- de la qualité de l'eau ;
- du débit d'eau distribué au pré-refroidisseur adiabatique.

La durée de vie du média de pré-refroidissement est de 5-7 ans si les bonnes pratiques de base et ces instructions d'utilisation et de maintenance sont suivies.

Si le média de pré-refroidissement s'entartre trop et trop vite, effectuer les contrôles et réglages suivants.

- Contrôle et réglage du nombre de démarrages et d'arrêts adiabatiques :
 voir « Contrôles et réglages » sur la page 19, section « Point de consigne de la commande adiabatique ».
- Contrôle et réglage de la qualité de l'eau :
 voir la section « À propos du traitement de l'eau » sur la page 10
- Contrôle et réglage du débit d'eau distribué au pré-refroidisseur adiabatique : voir la section « À propos du traitement de l'eau » sur la page 10.

BATTERIE D'ÉCHANGE DE CHALEUR

La batterie ailetée de l'échangeur de chaleur est susceptible de se corroder et de se couvrir de particules en suspension dans l'air (encrassement de la batterie). La vitesse d'encrassement de la batterie peut être réduite et la durée de vie de la batterie ailetée prolongée si le média de pré-refroidissement reste également en place durant la saison froide pour faire office de filtre à air.

La batterie de l'échangeur de chaleur requiert un nettoyage périodique afin de maintenir la plus haute efficacité de fonctionnement possible dans les conditions environnementales dans lesquelles l'aéroréfrigérant fonctionne. Un nettoyage périodique programmé de la batterie contribue considérablement à prolonger la durée de vie de l'équipement et représente une excellente source de conservation d'énergie.

Le nettoyage périodique de la batterie de l'échangeur de chaleur peut être effectué avec un aspirateur et/ou à l'air comprimé. Dans les environnements pollués, le nettoyage requerra des agents nettoyants pour batteries disponibles dans le commerce. Nettoyer les batteries en les pulvérisant d'eau peut éliminer les gros dépôts, mais pas les polluants. L'élimination de la saleté et du sel requiert un détergent capable de rompre l'adhérence entre la saleté et la surface de l'échangeur de chaleur. Cependant, en cas de pulvérisation d'eau, la pression de l'eau ne devra jamais dépasser 2 bars et le jet d'eau devra uniquement être orienté parallèlement à la surface des ailettes, jamais perpendiculairement..

Le choix d'un agent nettoyant pour batteries est important car il doit neutraliser et éliminer les dépôts de la surface de la batterie. BAC déconseille l'utilisation d'agents nettoyants pour batteries alcalins et acides. Ces agents nettoyants pour batteries peuvent causer une action moussante (oxydes ou hydroxydes d'aluminium) se traduisant par le décapage de la saleté, mais aussi de la couche superficielle de l'alliage de base. La plupart de ces agents nettoyants moussants sont agressifs et connus comme produits de nettoyage réactifs. Ce type d'agent nettoyant est reconnaissable à son étiquette, qui porte généralement la mention « corrosif ». L'ingrédient de base d'un agent nettoyant pour batteries ne doit pas être agressif au point d'attaguer le métal. le

L'ingrédient de base d'un agent nettoyant pour batteries ne doit pas être agressif au point d'attaquer le métal, le revêtement de la batterie ou le personnel qui applique l'agent nettoyant.

Un problème important de l'application des agents nettoyants pour batteries est le rinçage. La plupart des hydroxydes tendent à adhérer à la surface à moins d'avoir ajouté suffisamment d'agents mouillants à la formule afin de réduire la tension de surface de la solution. Si la solution ne contient pas assez d'agents mouillants et n'est pas soigneusement rincée de la surface, la matière résiduelle peut s'implanter entre l'ailette et le tube et continuer d'attaquer l'ailette.

BAC recommande d'utiliser des agents nettoyants plus sophistiqués dits "systèmes tensioactifs". Ils réduisent la tension de surface, pénètrent, émulsifient et dissolvent la saleté, mais pas l'alliage de base. Les systèmes tensioactifs sont sûrs pour l'alliage de la batterie. Faciles à appliquer et à rincer, ils décollent et éliminent mieux les dépôts que les agents nettoyants alcalins et ils sont sûrs pour l'environnement. Les systèmes tensioactifs sont presque toujours non corrosifs.

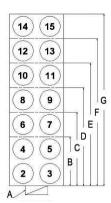
Remplacement du ventilateur

En cas de remplacement, tout risque pour la sécurité lié au ventilateur doit être réévalué une fois le ventilateur installé sur le refroidisseur.

Lors de toute intervention sur les ventilateurs, respectez les instructions suivantes :

- N'effectuez ni modification, ni ajout, ni conversion au ventilateur sans l'approbation du constructeur du refroidisseur.
- Les bornes et connexions peuvent présenter une tension résiduelle après l'arrêt de l'appareil. Après mise hors tension de tous les pôles, attendez cinq minutes avant d'ouvrir le ventilateur.
- En cas de panne, il existe néanmoins une tension électrique sur le rotor et la turbine. Ne touchez pas le rotor et la turbine une fois ceux-ci installés.
- Éteignez immédiatement le ventilateur si un dispositif de protection est manquant ou inefficace.

Les ventilateurs sont contrôlés par un système de bus numérique (MODBUS RTU).

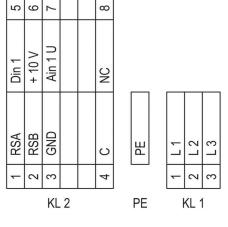

Pour la communication des bus, chaque ventilateur doit se voir assigner une adresse unique, commençant par "2, 3, 4......", en conservant le 1 pour tout ventilateur de remplacement. La séquence du système ci-dessus est illustrée dans le diagramme ci-dessous.

En cas de remplacement d'un ventilateur, vous devrez mentionner le numéro attribué au ventilateur et indiqué sur les diagrammes, afin que le ventilateur de remplacement soit programmé en conséquence.

For models with "80" or "87" in their nomenclature (EC80nn-xxxx or EC87nn-xxxx), please refer instructions below.	to the
---	--------

EC80

- A. Coffret de commande
- B. Appareil 4 ventilateurs
- C. Appareil 6 ventilateurs
- D. Appareil 8 ventilateurs
- E. Appareil 10 ventilateurs
- F. Appareil 12 ventilateurs
- G. Appareil 14 ventilateurs



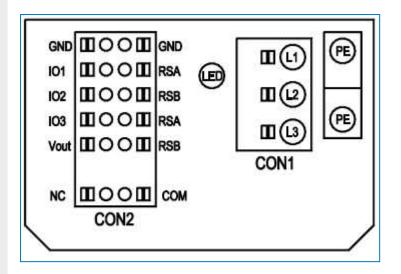
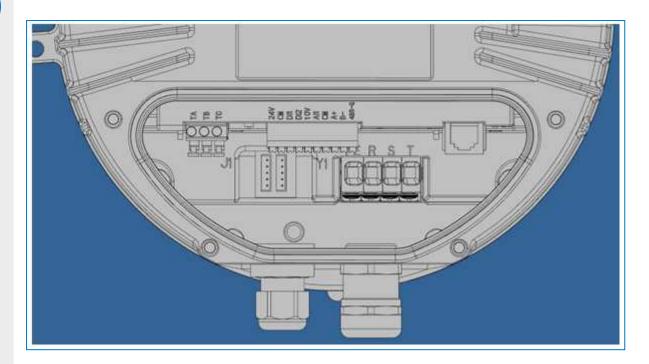

Diagramme illustrant la séquence des adresses des moteurs de ventilateur

Schéma du bornier du moteur interne.

N°.	Conn.	Désignation	Fonction / affectation
KL 1	1	L1	Connexion au secteur, tension d'alimentation 3~380÷480 V; 50/60 Hz
KL 1	2	L2	Connexion au secteur, tension d'alimentation 3~380÷480 V; 50/60 Hz
KL 1	3	L3	Connexion au secteur, tension d'alimentation 3~380÷480 V; 50/60 Hz
PE		PE	Connecteur de terre, connecteur PE
KL2	1	RSA	Connexion bus RS-485, RSA, MODBUS RTU ; SELV
KL2	2	RSB	Connexion bus RS-485, RSB, MODBUS RTU; SELV
KL2	3	GND	Terre du signal pour l'interface de contrôle, SELV
KI2	4	С	Relais d'état ; contact d'état flottant ; contact inverseur ; connexion commune ; charge des contacts 250 V c.a. / 2 A (AC1)
KL2	5	Din1	Entrée numérique 1 qui permet l'électronique Activé : ouvrir les broches ou tension appliquée 5-50 V c.c. Désactivé : pont vers GDN ou tension appliquée < 1 V c.c. Fonction de réinitialisation : déclenche la réinitialisation du logiciel après une modification du niveau vers < 1 V ; SELV
KL2	6	+ 10 V	Sortie de tension fixe 10 V c.c., +10V ±3%, max. 10 mA, protégée contre les courts-circuits, alimentation pour les périphériques extérieurs (ex. potentiomètre), SELV
KL2	7	Ain U	Entrée analogique 1 (valeur définie) 0-10 V, Ri=100 kΩ, courbe paramétrable, utilisable uniquement comme alternative à Ain1 SELV
KL2	8	NC	Relais d'état, contact d'état flottant, contact pour panne

EC87

Conn.	Désignation	Fonction / affectation
CON1	L1, L2, L3	Alimentation électrique, phase, voir la plaque signalétique pour la gamme de tension
PE	PE	Terre de protection
CON2	RSA	Interface RS485 pour MODBUS, RSA; SELV
CON2	RSB	Interface RS485 pour MODBUS, RSA; SELV
CON2	GND	Masse de référence pour l'interface de contrôle, SELV
CON2	IO1	Fonction paramétrable (voir tableau "Fonctions d'interface optionnelles") Réglage d'usine : Entrée numérique - actif élevé, fonction : Entrée de désactivation, SELV - inactif : Broche ouverte ou tension appliquée < 1,5 VDC - actif : tension appliquée 3,5-50 VDC Fonction de réinitialisation : Déclenchement de la réinitialisation des erreurs lors du passage de l'état "activé" à l'état "désactivé".
CON2	IO2	Fonction paramétrable (voir tableau "Fonctions d'interface optionnelles") Réglage d'usine : Entrée analogique 0-10 V / PWM, Ri=100 kΩ, fonction : Valeur de consigne Courbe caractéristique paramétrable (voir courbe caractéristique de l'entrée P1-IN), SELV



Conn.	Désignation	Fonction / affectation
CON2	IO3	Fonction paramétrable (voir tableau "Fonctions d'interface optionnelles") Réglage d'usine : Sortie analogique 0-10 V, max. 5 mA, fonction : Niveau de modulation du ventilateur Courbe caractéristique paramétrable (voir courbe caractéristique de sortie P3-OUT), SELV
CON2	Vout	Sortie tension 3.3-24 VDC ±5%, Pmax=800 mW, tension paramétrable Réglage usine : 10 VDC protégé contre les courts-circuits, alimentation pour les appareils externes, SELV alternativement : Entrée 15-52 VDC pour le paramétrage via MODBUS sans tension de ligne.
CON2	СОМ	Relais d'état, contact d'état flottant, connexion commune, valeur de contact 250 VAC / 2 A (AC1) / min. 10 mA, isolation renforcée du côté alimentation et du côté interface de commande
CON2	NC	Relais d'état, contact d'état flottant, contact pour panne
	LED	vert : état = bon, prêt à fonctionner orange : statut = avertissement rouge : statut = échec
	P1-IN	Courbe caractéristique d'entrée
	P3-OUT	Courbe caractéristique de sortie

For models with "8A" or "8B" in their nomenclature (EC8Ann-xxxx or EC8Bnn-xxxx), please refer to the instructions below.

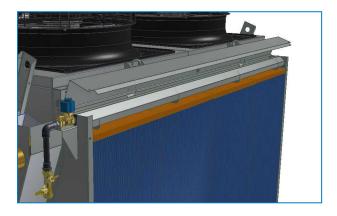
EC8B

TA	ТВ	TC	24V	СМ	DI1	DI2	10V	Al1	СМ	A+	B-	485-G

Borne	Description	Fonction		
TA		TC is a common point, TB-TC are normally closed		
ТВ	Relay contact	contacts, TA-TC are normally open contacts. The contact capacity is 3A 250VAC/30VDC.		
TC				
24V	24V power supply	Provides +24V power supply, generally used for digital input and output terminals external sensor. Résistance courant: 100mA		
CM	Grounding of power supply			
DI1		The functions of input terminals shall be defined per manufacturer's value. Other functions can also be defined by changing function codes.		
DI2	Digital input terminal	By default, inverter will run forward when DI1 is connected to CM, inverter will run reversely when DI2 is connected to CM.		
10V	+10V power supply	10V self-contained power supply of the inverter, with current restricted below 20mA.		
Al1	Entrée analogique	Range: DC voltage 0V~10V, input impedance: 22 kΩ		
СМ	Grounding of power supply			

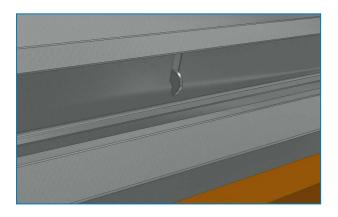
Borne	Description	Fonction			
A+	Positive polarity of lifferential signal	Standard: TIA/EIA-485 (RS-485) Communication protocol: Modbus			
B-	Negative polarity of differental signal	Communication rate: 1200/2400/4800/9600/19200/38400/57600/115200bps			
485-G	Grounding of power supply	Grounding of power supply for RS-485 differential signal			

Procédures de nettoyage

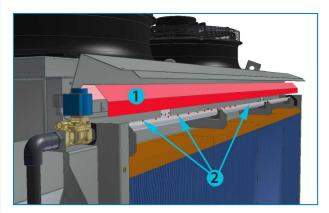

ATTENTION

Les pièces en acier inoxydable peuvent être tranchantes. Évitez tout risque de blessure par coupure en portant l'équipement de protection adéquat!

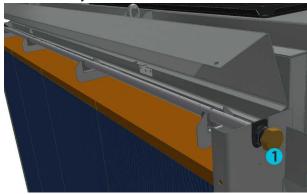
DISTRIBUTION D'EAU DES PRÉ-REFROIDISSEURS À PASSAGE UNIQUE


La procédure recommandée pour nettoyer le collecteur de distribution d'eau est la suivante :

1. Ouvrir le couvercle du média de pré-refroidissement monté sur charnière (la première fois, commencer par retirer les goujons qui fixent le couvercle pour le transport).

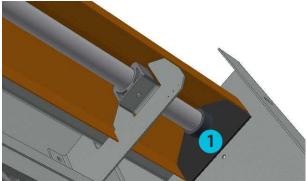


Le couvercle peut être fixé en position ouverte au moyen d'un crochet placé en son centre.



2. Soulever les plaques de déflexion d'eau et les retirer.

- 1. Plaques de déflexion d'eau
- 2. Trous pour l'eau
- 3. Activer l'eau du pré-refroidisseur à partir du menu de maintenance du régulateur numérique afin de vérifier si des trous sont bouchés et nécessitent un nettoyage. Si de l'eau sort du tuyau (à +/- 10 cm de hauteur) à intervalles réguliers, cela signifie que les trous ne sont pas obstrués. Cela s'applique également aux deux orifices de vidange situés aux extrémités du tuyau de distribution.
- 4. Dévisser le bouchon situé à l'extrémité du tuyau afin de rincer tous les débris susceptibles d'être piégés dans la tuyauterie de distribution d'eau.

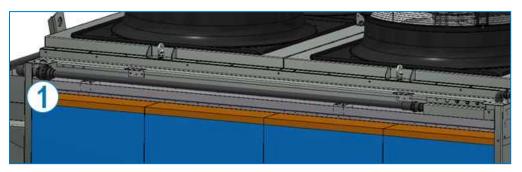


1. Bouchon sur la tuyauterie de distribution d'eau

5. Après le rinçage du tuyau, arrêter le débit d'eau en quittant le menu de maintenance. Remettre tout en place dans l'ordre inverse. Refermer le couvercle en soulevant délicatement le crochet de fixation.

Lors de la remise en place des plaques de déflexion d'eau, s'assurer de faire glisser les caoutchoucs vers le côté afin de réaliser un joint d'étanchéité approprié comme le montre l'illustration suivante.

1. Caoutchoucs latéraux sur la tuyauterie de distribution d'eau

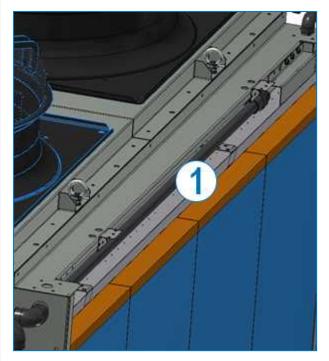

DISTRIBUTION D'EAU DES PRÉ-REFROIDISSEURS ÉQUIPÉS D'UNE POMPE DE RECIRCULATION

Le tamis de la pompe est dimensionné de manière à empêcher la pénétration des débris à l'intérieur de la gouttière de distribution d'eau. Des saletés peuvent toutefois s'accumuler au fil du temps. Par conséquent, la partie supérieure de la gouttière de distribution d'eau doit être nettoyée deux fois par an en guise de mesure préventive.

La procédure recommandée pour nettoyer le collecteur de distribution d'eau est la suivante :

1. Ouvrir le couvercle du média de pré-refroidissement monté sur charnière (la première fois, commencer par retirer les goujons qui fixent le couvercle pour le transport).

- 1. Raccord 3 pièces
- 2. Nettoyer la tuyauterie en cas d'obstructions en dévissant le bouchon fileté.



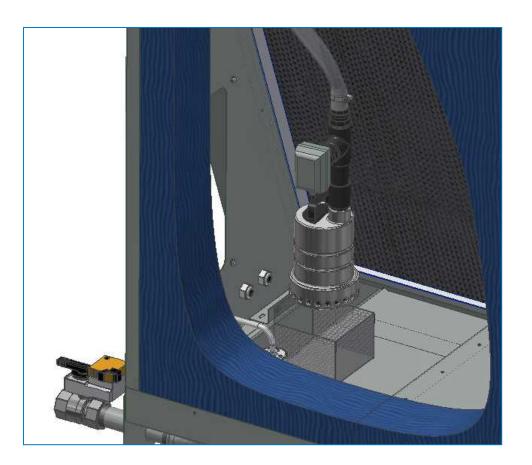
1. Bouchon fileté

Si les obstructions persistent, il est possible de desserrer la tuyauterie en démontant le raccord 3 pièces.

3. Utiliser un chiffon propre pour enlever les saletés et les débris de la gouttière.

- 1. Gouttière de distribution
- 4. Une fois la gouttière nettoyée, remettre tout en place dans l'ordre inverse et refermer le couvercle.

TAMIS ET POMPE DES PRÉ-REFROIDISSEURS ÉQUIPÉS D'UNE POMPE DE RECIRCULATION


La pompe et le tamis peuvent être nettoyés durant le fonctionnement adiabatique. Avant d'effectuer toute opération de maintenance sur les pompes, commencer par débrancher l'alimentation des pompes au niveau du coffret électrique. Le fonctionnement adiabatique peut être assuré par le biais du menu de maintenance du régulateur.

1. Desserrer les boutons et retirer le panneau d'inspection (si deux pompes sont présentes, l'appareil est équipé de deux panneaux).

2. Soulever la pompe du tamis et la retirer par l'intermédiaire du panneau d'inspection.

- 3. Ôter les boulons de fixation du tamis situés dans le bassin pour retirer le tamis et le nettoyer à l'extérieur de l'appareil.
- 4. Remettre en place les divers éléments dans l'ordre inverse.

Média de pré-refroidissement adiabatique

NETTOYAGE

La PLC est programmé pour un nettoyage automatique périodique du média de pré-refroidissement. Si le média a besoin d'un nettoyage manuel supplémentaire, il est possible de forcer un cycle de nettoyage au moyen du PLC.

DÉMONTAGE ET REMPLACEMENT

La durée de vie du média de pré-refroidissement est de 5-7 ans si les bonnes pratiques de base et ces instructions d'utilisation et de maintenance sont suivies. Si les conditions de fonctionnement réduisent l'efficacité du fonctionnement à sec et l'écoulement d'air, il est recommandé de remplacer le média de pré-refroidissement. Les nouveaux médias de pré-refroidissement adiabatiques sont disponibles auprès du représentant BAC local.

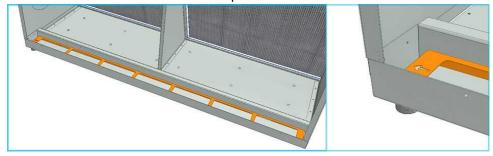
Procédure de démontage/remplacement du média

- 1. Vérifier que le média de pré-refroidissement est SEC ! Le fait de retirer un média humide entraîne la chute de débris dans l'appareil.
- 2. Démonter la plaque supérieure.
- 3. Démonter le média de pré-refroidissement.

Commencer par le milieu et aller ensuite vers les côtés.

Remettre ensuite en place les divers éléments dans l'ordre inverse. S'assurer que le média de prérefroidissement est correctement pressé sur les supports dans la gouttière de collecte d'eau située par dessous.

Le média de pré-refroidissement est doté d'un côté avant et d'un côté arrière, et doit être (re)monté dans le bon sens afin de s'assurer qu'il est complètement mouillé sur toute sa profondeur et que son efficacité est maximale. Le côté bleu doit se situer à l'extérieur.


GOUTTIÈRES DE COLLECTE D'EAU EN DESSOUS DU MÉDIA DE PRÉ-REFROIDISSEMENT

L'eau qui passe sur le média de pré-refroidissement et qui ne s'est pas évaporée est collectée dans une gouttière, qui guide cette eau soit vers un système de vidange (en cas de pré-refroidisseur à passage unique) soit vers un bassin (en cas de pré-refroidisseur avec recirculation).

Une fois par an, il faut vérifier que la gouttière est exempte de débris et que les raccords de sortie d'eau ne sont pas obstrués.

Cela peut se faire en retirant le média de pré-refroidissement comme décrit ci-dessus.

Lors de la remise en place du support du média de pré-refroidissement, veiller à ce que la flèche pointe vers la connexion de sortie d'eau comme indiqué dans les illustrations ci-dessous :

À propos de la maintenance globale

Afin d'assurer le maximum d'efficacité et le minimum d'arrêts du système de refroidissement évaporatif, il est recommandé d'établir et d'exécuter un programme de maintenance préventive.

Le représentant BAC local vous aidera à établir et réaliser ce programme. Le programme de maintenance préventive ne doit pas seulement éviter qu'un trop grand nombre d'arrêts ne se produise sous des conditions imprévues et indésirables, mais il doit aussi assurer qu'on utilise les pièces de rechange d'origine, conçues pour s'adapter parfaitement à l'équipement et entièrement couvertes par la garantie d'usine. Pour commander des pièces de rechange d'origine, contacter le représentant BAC local. Lors de la commande de pièces, ne pas oublier d'indiquer le numéro de série de l'unité.

Stockage prolongé à l'extérieur

Si le ou les appareils sont stockés à l'extérieur pendant un mois ou plus avant l'installation et/ou la mise en service, ou s'ils sont stockés en conditions climatiques rudes, il est impératif que l'installateur effectue certaines actions afin que les appareils restent en état tels qu'expédiés. Voici quelques-unes de ces actions :

- faire tourner le ou les ventilateurs une fois par mois (10 tours minimum);
- faire tourner l'arbre de moteur de tous les moteurs installés sur l'appareil (les appareils) une fois par mois (10 tours minimum). Ceci inclut le moteur de la pompe.
- ajouter des desséchants pour réguler l'humidité à l'intérieur des panneaux ;
- envelopper le moteur dans un matériau protecteur autre que le plastique ;
- laisser les vidanges des bassins d'eau froides ouvertes ;
- s'assurer que le ou les appareils sont stockés au niveau du sol.
- · Les batteries doivent être vides et fermées.
- Évitez les basses températures.
- Évitez toute condensation.
- Vérifiez la pile du dispositif de commande.

Pour des instructions complèmentaires, veuillez contacter votre représentant BAC local.

The service expert for BAC equipment

We offer tailored services and solution for BAC cooling towers and equipment.

- · Original spare parts and fill -for an efficient, safe and year round reliable operation.
- Service solutions preventive maintenance, repairs, refurbishments, cleaning and disinfection for reliable trouble-free operation.
- · Upgrades and new technologies save up energy and improve maintenance by upgrading your system.
- · Water treatment solutions equipment for controlling corrosion scaling and proliferation of bacteria.

Pour plus de détails, contacter le représentant BAC local pour toute information complémentaire et assistance spécifique sur www.BACservice.eu

Plus d'informations

LITTÉRATURE DE RÉFÉRENCE

- Les règlements et usages comme Eurovent 9-5 (6) sont recommandés pour maintenir le système de refroidissement efficace et sûr. Eurovent/Cecomaf, 2002, 30 p.
- Guide des bonnes pratiques, Legionella et tours aéroréfrigérantes. Ministères de l'Emploi et de la Solidarité, Ministère de l'Economie des Finances et de l'Industrie, Ministère de l'Environnement, Juin 2001, 54 p.
- Voorkom Legionellose. Minsterie van de Vlaamse Gemeenschap. December 2002, 77 p.
- Legionnaires' Disease. The Control of Legionella Bacteria in Water Systems. Health & Safety Commission. 2000, 62 p.
- Hygienische Anforderungen an raumlufttechnische Anlagen. VDI 6022.

SITES WEB INTÉRESSANTS

Baltimore Aircoil Company	www.BaltimoreAircoil.com
BAC Service website	www.BACservice.eu
certifiés	www.eurovent-certification.com
European Working Group on Legionella Infections (EWGLI)	EWGLI
L'ASHRAE	www.ashrae.org
Uniclima	www.uniclima.fr
Association des Ingénieurs et techniciens en Climatique, Ventilation et Froid	www.aicvf.org
Health and Safety Executive	www.hse.gov.uk

DOCUMENTATION ORIGINALE

La version originale de ce manuel a été rédigée en anglais. Les traductions sont fournies pour votre facilité. En cas de divergence, le texte anglais original prévaut sur les traductions.

TOURS DE REFROIDISSEMENT

TOURS DE REFROIDISSEMENT À CIRCUIT FERMÉ

STOCKAGE ET ACCUMULATION DE GLACE

CONDENSEURS ÉVAPORATIFS

PRODUITS HYBRIDES

PIÈCES, INSTALLATIONS & SERVICES

BLUE by nature GREEN at heart

www.BaltimoreAircoil.com
Europe@BaltimoreAircoil.com

Veuillez consulter notre site web pour les coordonnées de votre contact local